STEM Success Center

Introduction to Digital Circuits 1

Types of Digital Circuits:

- Combinational: consists of logic gates whose outputs are determined from the present combination of inputs.
- Design of combinational circuit follows these procedures:
- Sequential: consists of combinational circuits and a memory elements circuit.

Types of Adders

- Binary Adder:
- Most basic arithmetic operation.
- Consists of four possible operations:

$$
0+0=0,0+1=1,1+0=1 \text { and } 1+1=\xrightarrow[(\underset{\square}{\longrightarrow} \text { sum }]{\text { carry }}
$$

- The higher significant bit of this result is called a carry
- The lower significant digit is sum
- Half Adder:
- Needs two binary inputs and produce two binary outputs.
- The input variables are the augends and addend bits; the output variables are sum (s) and carry (c).
- In this circuit x and y are input and S and C are the output.
- The truth table, the Boolean function and the logic circuit for half adder:

$$
\begin{array}{ll}
S=x^{\prime} y+x y^{\prime} & \text { (from the truth table) } \\
C=x y & \text { (from the truth table) }
\end{array}
$$

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{C}	\boldsymbol{S}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Full Adder:
- A combinational circuit that forms the arithmetic sum of three bits.
- Consists of three inputs and two outputs.
- Two of the inputs are x and y, representing the two significant bits to be added.
- The third input z is carry from the previous lower significant position.
- Two output are sum(S) and carry(C).
- the truth table and map for full adder:

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{C}	\boldsymbol{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Decoder:

- Converts binary information from \boldsymbol{n} input lines to a maximum of 2^{n} unique output lines.
- As an example consider the 3-to-8 line decoder circuit below:

CS 231
Handout

- The three inputs are decoded into eight outputs, each representing one of the minterms of the three input variables.
- The three inverters provide the complement of inputs.
- Each one of eight AND gates represent one of the minterms.

Multiplexer

- The multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line.
- The selection of particular input line is controlled by a set of selection lines.
- Normally, there are $\mathbf{2}^{\boldsymbol{n}}$ input line and \boldsymbol{n} selection lines whose combinations determine which input is selected.
- A 2-to-1 line multiplexer connects one of two 1-bit sources to a common destination as shown in the next slide.
- The block diagram of the circuit is also shown below.

Examples of Combinational circuits:

- Design a combinational circuit with three inputs and one output. The output is 1 when the binary value of the inputs is less than 3 . The input is 0 otherwise.
- Answer:

1. In this question, we have three input (let's call them x, y, z) and one output (let's call it F):
2. Derive the truth table that defines the required relationship between inputs and outputs. (from question, it says that the output is 1 if the binary value of input is less than 3:

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{F}
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

3. Get simplified Boolean function for each output as a function of the input
variables:

4. Draw the logic diagram:

CS 231
Handout

